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F L O W S  

We study within the f r a m e w o r k  of l inear  theory  the s tabi l i ty  of p lane -pa ra l l e l  flows of a 
v i scous , e l ec t r i ca l ly  conducting fluid in a t r a n s v e r s e  magnet ic  field. The magnet ic  Reynolds 
numbers  a r e  a s sumed  smal l .  The c r i t i ca l  Reynolds number  as a function of the Har tmann 
number  is obtained ove r  the ent i re  range  of var ia t ion  of the la t ter .  The smal l  per turbat ion  
spec t rum  is studied in detail  on the example  of Har tmann flow. Neutra l  curves  a r e  con-  
s t ruc ted  for  s y m m e t r i c  and a n t i s y m m e t r i c  d i s tu rbances .  The destablizing effect  of a mag-  
netic field is studied in the case  of modif ied Couette flow. The resu l t s  obtained agree  with 
the calculat ions of Lock and Kakutani (where they meet) and a r e  at  va r iance  with the resu l t s  
of Pavlov.  

1. We examine s teady flow of a v i s cous , i ncompres s ib l e , e l e c t r i c a l l y  conducting fluid between para l le l  
plates  in a t r a n s v e r s e  magnet ic  field. The magnet ic  Reynolds numbers  a r e  a s sumed  smal l .  The equation 
for  the ampli tude of the d is turbance  s t r e a m  function ~(y) has the fo rm [1, 2] 

with the boundary  conditions 

~pIV __ 2a2q~- + a4cp = J a R  [(u - -  c)  (r - -  a2cp) - -  u"ep] + G2ep" 

- - i ~ y < t  
(i .i) 

(~1 )  = ~' (_+i) = 0 (1 .2 )  

Here  a is the wavenumber ;  u the veloci ty  profile; R the Reynolds number;  G the Har tmann number;  
c = X + iY the complex  per turba t ion  phase  veloci ty,  the cha r ac t e r i s t i c  value of the problem.  The value 
Y < 0 co r re sponds  to decay of the per turba t ion ;  the value Y > 0 co r responds  to growth.  We take as unit 
length the channel halfwidth; unit veloci ty  is the max ima l  s t r e a m  veloci ty  for  Har tmann flow and half the 
re la t ive  veloci ty  of the plates  for  Couette flow. The hydrodynamic s tabi l i ty  p rob lem reduces  to analys is  
of the spec t rum of the c h a r a c t e r i s t i c  values  of the modified O r r - S o m m e r f e l d  equation (1.1) with the boun- 
da ry  conditions (1.2). 

Usually we r e s t r i c t  ou r se lves  to studying neutra l  per turba t ions ,  which is sufficient for finding the 
c r i t i ca l  Reynolds number s .  However  for s e v e r a l  p rob l ems ,  for  example  development  of the nonlinear  
theory ,  informat ion on the comple te  s m a l l - p e r t u r b a t i o n  spec t rum is of in te res t  in studying the behavior  of 
an a r b i t r a r y  per turba t ion  in the cour se  of t ime .  The comple te  s m a l l - p e r t u r b a t i o n  spec t rum has not been 
studied previous ly  in MHD stabi l i ty  p rob lems .  The mos t  comple te  resu l t s  on stabil i ty of Har tmann flow 
have been obtained by Lock [1]. The s tabi l i ty  of modified Couette flow was studied by Pavlov [3] and Kaku- 
tani  [2]. They obtained different  r esu l t s  on the dependence of the c r i t i ca l  Reynolds number  on the Har t -  
mann number .  

2. To calcula te  the e igenvalues  of (1.1) we used a modificat ion of the numer i ca l  method for  solvingthe  e i -  
genvalue p rob l em for  o rd ina ry  di f ferent ia l  equations with sma l l  p a r a m e t e r  affi l iated with the highest de r iva -  
t ive,  developed in [4]. F o r  given G, R, a the solution of the eigenvalue p rob lem (1.1), (1.2) yields a count- 
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t e ly  sa t i s f ied . )  
sec t ion  

F o r  s m a l l  and l a r g e  values  of 

(2.1) 

able  se t  of s p e c t r a l  numbers  c n ( a , R , G ) .  
a we can obtain asympto t i c  exp res s ions  for c n. Assuming  that  

[ c [>~>max (I ul, I~"l) 

we obtain f rom (1.1), (1.2) 

Yn = --In2 (n -~ i )  ~ 4- 4G 2] / 4 aR  (2.2) 

for  those  s m a l l  a for  which (2.1) is s a t i s f i ed .  F o r  Har tmann flow the 
values  n = 1 ,3 ,  5 . . .  c o r r e s p o n d  to s y m m e t r i c  pe r tu rba t ions ,  the values  
n = 2 ,4 ,  6 . . .  c o r r e s p o n d  to a n t i s y m m e t r i c  pe r tu rba t ions .  (Fo r  sma l l  
even values  of n, the a sympto t i c  e x p r e s s i o n  (2.2) for  Yn is  a p p r o x i m a -  

As  an a sympto t i c  e x p r e s s i o n  for  Xn for  sma l l  c~ one t akes  the ave rage  over  the c r o s s -  

+1 

X n = l / ~  ~ udy  (2 
-1  

although a m o r e  exact  e s t i m a t e  can be obtained.  The s p e c t r u m  number ing  is made in acco rdance  with the 
s p e c t r a l  ha rmonic  o r d e r  for  s m a l l  a .  F o r  l a rge  a the asympto t ic  exp re s s ion  for Yn has the fo rm 

Y n  ~- - -  a / .R (2.4) 

jus t  as in the Case of convent ional  Po i seu i l l e  flow. If n >> 1, for  f inite R the eigenvalue s p e c t r u m  in the 
f i r s t  approx imat ion  co inc ides  with the s p e c t r u m  of a r e s t i ng  liquid, and t h e r e f o r e  the ins tab i l i ty  type con-  
s i d e r e d  he re  for  the ve loc i ty  prof i le  cannot be a s s oc i a t e d  with l a rge  n. 

Thus the reg ion  of n u m e r i c a l  ana lys i s  is l imi t ed  to the study of a finite number  of s p e c t r a l  numbers  
n and a f inite range  of a .  This  c i r c u m s t a n c e  makes  the  n u m e r i c a l  ca lcu la t ions  ea s i l y  v i sua l i zed .  In s tudy-  
ing the s p e c t r u m  the cons t ruc t ion  of the r e l a t ion  Cn(a) (for fixed G and R) began with the asymptot ic  ex- 
p r e s s i o n s  (2.2), (2.3). Then "continuous motion" is p e r f o r m e d  up to the  asympto t ic  va lues  of c n for l a r g e  

(2.4). "Continuous motion" was a l so  used to find the dependence of the c r i t i c a l  Reynolds number  R ,  and 
the c r i t i c a l  wavenumber  a ,  on G and to cons t ruc t  the neu t ra l  cu rves .  The e igenvalues  were  found with a 
spec i f i ed  a c c u r a c y  (three s igni f icant  d igi ts) .  The n u m e r i c a l  ca lcu la t ions  we re  made on a BI~SM-6 
compute r .  

3. The s t ab i l i ty  of Hartmarm flow 

u =  (chG--chVy) / (chG-- i )  

was s tudied by Lock [1] using the H e i s e n b e r g - L i n  asympto t ic  method.  He obtained the r e l a t i ons  R ,  (G) and 
a ,  (G) ove r  the en t i r e  range  of va r i a t i on  of the a rgument .  

The n u m e r i c a l  ca lcu la t ions  which we made to check the n u m e r i c a l  a lgo r i thm gave good ag reemen t  
with the r e s u l t s  of Lock.  In Fig .  1 the n u m e r i c a l  ca lcu la t ions  a r e  r e p r e s e n t e d  by the sol id  l ine (curve 1), 
while  Lock ' s  r e s u l t s  a r e  the points .  The dashed curve  2 shows the asympto t ic  r e l a t i on  R ,  = 50,000 G, 
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~z constructed by Lock for the limiting case of large G, when the velocity 
-~ profile degenerates  to exponential form 

0 ~ u = i - -  e x p  [ g  (y - -  i ) ]  ( 3 . 1 )  

0E~ ~/ --/ / / /  as in the case  of the boundary layer  with suction. Figure  2 shows the r e -  
lation a ,  (G). (The solid curve 1 is the present  calculation, the points a re  

-u~ I / z Lock ' s  data, the dashed curve 2 is Lock ' s  asymptotic equation c~, = 0.16 
G,) Lock found that for large G even ant i symmetr ic  disturbances may be-  

~  i ~  - -  come unstable. Our calculations indicate the nature of this instability. 
�9 -/m 5 1o* m -3 1o -z m -~ I z m z In  Figs.  1 and 2 the curves 3 represent  the relations R,  (G) and c~. (G) 

for an t i symmetr ic  dis turbances.  The number R ,  becomes finite for 
Fig. 6 

G > 6.5; with further increase of G the minimal value R. = 5.4 �9 i05 is 
reached at G = 9.1 and it then increases again, reaching the asymptotic 

relation 2 for G > 15. Although R. is smaller for symmetric disturbances, we can see from Fig. 1 that a 
situation may be realized in which symmetric disturbances decay while antisymmetric will be neutral or 
divergent. 

Figure 3 shows the neutral curves for symmetric (curve i) and antisymmetrie (curve 2) disturbances 
for G = I0. One part of the overall neutral curve for the flow (shown by the solid curve) consists of the 
neutral curve for symmetric disturbances, and the other part consists of the neutral curve for antisym- 
metric disturbances. The overall curve has a form which is unusual for hydrodynamic stability problems. 
It is characteristic that along the lower branch 2 of the neutral curve the asymptotic relation ~ ~ 106/R is 
well satisfied even for H > I0 ~. Since the critical point Yc is at a distance of order (~R)-I/3 [5] from the 
wail, along the lower branch of the neutral oscillations it does not approach the wall with increase of R but 
remains at a fixed distance from the wall, equal to 0.015 for G = i0. Along the other branches of the neu- 
tral curves the parameter ~R increases and the critical point approaches the wall as R -* ~o. 

The existence of unstable harmonics with different spectral numbers, and the arguments discussed 
in Section 2, suggest study of the entire small-disturbance spectrum. Let us trace the change of the small- 
disturbance spectrum with increase of G. In the limiting case G = 0 (Poiseuille flow) the spectrum was 
studied in detail in [6]. Its characteristic feature is marked separation of the spectral harmonics with in- 
crease of the wavenumber into two classes: disturbances localized near the channel wall with phase ve- 
locity approaching zero, and disturbances localized near the channel axis with phase velocity approaching 
unity. In the case G < 1 the spectral harmonic distribution is the same as for Poiseuille flow. Distur- 
bances with numbers n= i, 2, 5, 8... are the wall type, those with numbers n=3, 4, 6, 7... are the core 
type. With increase  of G the spec t rum changes significantly. 

For  G = 3 the f i rs t  symmet r i c  harmonic leads to instability, just  as in the Poiseuil le parabolic p ro -  
file case ,  however dis turbances with spec t ra l  numbers  2 and 5, which were  previously wal l - type for G = 0, 
become core- type;  the disturbance with n = 4, previously cure- type ,  becomes wall- type.  For  G = 6 the 
spec t rum undergoes fur ther  modification and, specifically,  instability is now associa ted with the third har -  
monic. Figures  4 and 5 show the relat ions 

c n (a) ~ X n (a) -~ i •  n ( a )  for G ~ t0, R = 6 �9 t0 a 

Fo r  large G the veloci ty profile can be divided into two segments:  the wall segment  with dimension 
about l / G ,  where (3.1) holds; and the core ,  where we can take u - 1. Correspondingly,  the spect rum of the 
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c o r e  d i s tu rbances  a l so  c o r r e s p o n d s  with high a c c u r a c y  to the s p e c t r u m  of the u --- 1 prof i le .  In this  case ,  
as  appa ren t ly  for  any smooth  convex p ro f i l e s ,  the ins tab i l i ty  is a lways  a s s o c i a t e d  for  s m a l l  G with the even 
wal l  d i s tu rbances  and for  l a rge  G with the odd wal l  d i s tu rbances  as wel l .  The c h a r a c t e r i s t i c  values  at 
l a rge  wavenumbers  for  the s y m m e t r i c  and a n t i s y m m e t r i c  wal l  d i s tu rbances  m e r g e  a sympto t i ca l l y  in ac -  
co rdance  with the loca lness  p r o p e r t i e s  [6]. Speci f ica l ly ,  the shor twave  d i s tu rbances  a r e  in p r a c t i c e  non- 
ze ro  on a s m a l l  in te rva l  of a va r i a t i on  of o r d e r  1 / a  and a r e  independent of the na ture  of the homogeneous 
boundary  condit ions at the channel  ax i s .  F o r  a ,  > 2 the c h a r a c t e r i s t i c  values  for  the d iverging d i s -  
t u rbances  and R ,  in the s y m m e t r i c  and a n t i s y m m e t r i c  c a s e s  coincide ,  as we see  in F i g s .  1 and 2. 

The behav io r  of the co re  d i s tu rbances  a l so  i l l u s t r a t e s  the loca lness  p r o p e r t i e s .  We see  in F igs .  4 
and 5 that  even for  s m a l l  wavenumbers ,  when the c r i t i c a l  point is s t i l l  r e l a t i v e l y  far  f rom the axis  and the 
s y m m e t r y  and a n t i s y m m e t r y  condit ions a r e  not s ignif icant ,  the co r respond ing  c h a r a c t e r i s t i c  va lues  m e r g e  
by p a i r s .  With i n c r e a s e  of ~ [in the reg ion  of max ima  of the re la t ions  Yn(C~)], when the axis  l ies  in a s m a l l  
v ic in i ty  of Yc, the condit ions at  the axis  begin to have an effect  and the c h a r a c t e r i s t i c  values  s t r a t i f y  ove r  a 
s m a l l  range  of va r i a t i on  of ~ ,  and then they approach  the common asympto t ic  r e la t ion .  The s t r a t i f i ca t ion  
of the Cn(~) curves  is not l a rge ,  and t h e r e f o r e  is not shown to avoid c lu t te r ing  the f igures .  The loca lness  
p r o p e r t i e s  for  the co re  d i s tu rbances  were  ana lyzed  in de ta i l  in [6] for  the example  of Po i seu i l l e  flow. 

With i n c r e a s e  of G t h e r e  is an i n c r e a s e  of the s p e c t r a l  number  of the unstable  d i s t u rbances .  We see  
f rom Fig .  5 that  f o r  G = 10 the d i s tu rbances  with n = 5.6 a r e  uns table .  F o r  G = 15 one of the unstable  d i s -  
t u rbances  c o r r e s p o n d s  to n = 8. F o r  G = 18 one c o r r e s p o n d s  to n = 10. Thus,  the s p e c t r a l  number  of the 
uns table  d i s tu rbances  i n c r e a s e s  in p ropor t ion  to G. 

The ca lcu la t ions  of the s m a l l - d i s t u r b a n c e  s p e c t r a  for  Har tmalm flow were  made without the t e r m  
G2q~" in (1.1). This  o m i s s i o n  is jus t i f ied  p rov ided  ~R >> G 2. The l a t t e r  wil l  not be s a t i s f i ed  only for  

<< ~ , .  In F ig .  5 the curve  6' c o r r e s p o n d s  to the s ix th  s p e c t r a l  b ranch ,  ca lcu la ted  with account  for  the 
t e r m  G2~" in the r igh t  s ide  of (1.1). I ts influence leads  to m o r e  rap id  decay  of the d i s tu rbances  in the 
cons ide r ed  s p e c t r u m  for  s m a l l  ~ .  The asympto t i c  r e l a t i ons  for  s m a l l  ~ for  the s p e c t r a l  b ranches  6 and 6, 
d i f fer  s ign i f ican t ly  in a cco rdance  with (2.2). 

4. Modified Couette flow 

u =  s h G y / s h G  

in a t r a n s v e r s e  magnet ic  f ie ld is an in t e re s t ing  ca se  of des tab i l i z ing  influence of a magnet ic  f ield.  

The ve loc i ty  p rof i l e  is  de fo rmed  by the magnet ic  f ie ld  in such a way that  the Reynolds s t r e s s e s  can 
lead  to ins tab i l i ty .  The ins tab i l i ty  is not a s s o c i a t e d  d i r e c t l y  with the inflect ion point of the ve loc i ty  p ro -  
f i le  [2]. Curves  4 in F i g s .  1 and 2 a r e  the r e l a t ions  R ,  (G), ~ ,  (G). Curves  5 in these  f igures  c o r r e spond  
to the r e su l t s  obtained in [2]. Our n u m e r i c a l  ca lcu la t ions  a g r e e  wel l  with Kakutan i ' s  r e s u l t s  for  s m a l l  
va lues  of ~ , .  The min ima l  R ,  is de t e rmin e d  m o r e  exact ly  than in [2]. (The author  of [2] noted the inac-  
cu racy  of his va lues  h imsel f . )  Calcula t ion  of the  reg ion  of i n t e r m e d i a t e  Har tmann numbers  (5 < G < 15) 
now makes  it poss ib l e  to evalua te  the s t ab i l i ty  of the subjec t  flow ove r  the en t i r e  range  of Har tmann num- 
b e r s .  Kakutani  concluded that  the asympto t i c  e x p r e s s i o n s  for  R , ,  ~ ,  with G > 15 should coincide  with the 
co r r e spond ing  asympto t i c  e x p r e s s i o n s  of Lock for  Har tmann flow. 

The r e s u l t s  of the  p r e s e n t  s tudy show that  for  G > 15 the r e l a t ion  R ,  (G) d i f fers  ve ry  l i t t le  f rom the 
Lock re la t ion .  We note that  the r e l a t ions  R ,  (G), ~ ,  (G) a r e  s i m i l a r  to the r e l a t ions  for  a n t i s y m m e t r i c  
d i s t u rbances  in the ca se  of Har tmann flow. 

F i g u r e  6 shows Y(a) for  the  mos t  c r i t i c a l  s p e c t r a l  number  for  R = 106 for  va r ious  G. Curve  i c o r -  
r e sponds  to G = 5, curve  2 is for  G = 45, cu rve  3 is for  G = 100. The co r r e spond ing  ca lcu la t ions  we re  
made  with account  for  the t e r m  G2r '' in (1.1). The b r e a k s  in the  s p e c t r a l  b ranches  c o r r e s p o n d  to the onset  
of o s c i l l a t o r y  d i s tu rbances  for  s m a l l  a ,  j u s t  as in the ca se  of conventional  Couette flow. In Fig .  6 the 
dashed curve  shows the r e l a t ion  II = maxczY(G ) for  the m o s t  c r i t i c a l  s p e c t r a l  number  for  R = 10 ~, which 
i l l u s t r a t e s  the magnet ic  f ie ld influence on the flow for fixed R. 

Ins tab i l i ty  develops  for  G = 4, t h e r e a f t e r  the i nc remen t s  of the mos t  c r i t i c a l  d i s tu rbances  i n c r e a s e  
with i n c r e a s e  of G, reach ing  a max imum at  G = 8, and then d e c r e a s e  and for  G = 21 the flow again  becomes  
s tab le .  In [3] the conclus ion is drawn that  modif ied  Couette flow becomes  unstable  with r e s p e c t  to inf ini-  
t e s i m a l  d i s tu rbances  for  R "~ 25 and G = 1-3. Taking into cons ide ra t ion  the r e s u l t s  obta ined he re  and in 
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[2], we mus t  cons ider  that  this conclusion is in e r r o r .  The s ta tement  of Pavlov that the d is turbances  with 
l a rge  values of a a r e  physical ly  unreal is t ic  is a lso invalid. 

In conclusion we note that  although the immedia te  subject  of this invest igat ion was the s tabi l i ty  of 
MHD flows, the r e su l t s  obtained demons t r a t e  the influence of the veloci ty  profi le  shape on the s m a l l - d i s -  
tu rbance  spec t rum,  and the c r i t i ca l  Reynolds numbers  a r e  ac tual ly  independent of the nature  of those  physi -  
cal  effects  which de t e rmine  the veloci ty  prof i le .  

The authors  wish to thank M. A. Gol 'dsht ik  for  his in te res t  in this study. 

i, 

2. 

3. 

4. 

5. 
6. 

LITERATURE CITED 

R. C. Lock, "The s tabi l i ty  of the flow of an e lec t r ica l ly-conduct ing  fluid between para l l e l  planes un- 
der  a t r a n s v e r s e  magnet ic  field," P roc .  Roy. Soc., A 233~ No. 1192 (1955). 
T. Kakutani,  "The hydromagnet ic  s tabi l i ty  of the modified plane Couette flow in the p r e sence  of a 
t r a n s v e r s e  magnet ic  field, ~ J .  Phys .  Soc. Japan,  ~ No. 6 (1964}. 
K. B. Pavlov,  "On the s tabi l i ty  of plane Couette flow in the p re sence  of a magnet ic  field, ~ Collection: 
MHD and P l a s m a  Dynamics  [in Russian] ,  Izd. AN Latv.  SSR, Riga (1962). 
M. A. Gol 'dsht ik  and V. A. Sapozlmikov, "Stabili ty of l amina r  flow in the p re sence  of a m a s s - f o r c e  
field, n Izv. AN SSSR MZhG, 3, No. 5 (1968). 
C. C. Lin, Hydrodynamic Stability, Cambr idge  Univers i ty  P r e s s  (1966). 
V. A. Sapozhnikov, M. A. Gol 'dsht ik ,  and V. N. Shtern, "Local  p rope r t i e s  of the veloci ty  prof i le  and 
hydrodynamic  s t ab i l i ty , '  Collection: 2nd Republic Conference  on Aerohydrodynamics ,  Heat T r a n s f e r ,  
and Mass  T r a n s f e r  (Summar ies  of Reports)  [in Russian] ,  Kiev (1969). 

478 


