STABILITY OF PLANE-PARALLEL MHD FLOWS
IN TRANSVERSE MAGNETIC FIELD

A. M. Sagalakov and V. N. Shtern

We study within the framework of linear theory the stability of plane-parallel flows of a
viscous,electrically conducting fluid in a transverse magnetic field. The magnetic Reynolds
numbers are assumed small. The critical Reynolds number as a function of the Hartmann
number is obtained over the entire range of variation of the latter. The small perturbation
spectrum is studied in detail on the example of Hartmann flow. Neutral curves are con-
structed for symmetric and antisymmetric disturbances. The destablizing effect of a mag-
netic field is studied in the case of modified Couette flow. The results obtained agree with
the calculations of Lock and Kakutani (where they meet) and are at variance with the results
of Pavlov.

1. We examine steady flow of a viscous,incompressible,electrically conducting fluid between parallel
plates in a transverse magnetic field. The magnetic Reynolds numbers are assumed small, The equation
for the amplitude of the disturbance stream function ¢(y) has the form [1, 2}

oV — 202" + alp = iaR [(u — ) (9" — o?q) — u"¢l 4 C*¢” 1.1)
-1yt
with the boundary conditions
PED=¢ 1) =0 1.2)

Here a is the wavenumber; u the velocity profile; R the Reynolds number; G the Hartmann number;
¢ = X + iY the complex perturbation phase velocity, the characteristic value of the problem. The value
Y < 0 corresponds to decay of the perturbation; the value Y > 0 corresponds to growth. We take as unit
length the channel halfwidth; unit velocity is the maximal stream velocity for Hartmann flow and half the
relative velocity of the plates for Couette flow. The hydrodynamic stability problem reduces to analysis
of the spectrum of the characteristic values of the modified Orr-Sommerfeld equation (1.1) with the boun-
dary conditions (1.2).

Usually we restrict ourselves to studying neutral perturbations, which is sufficient for finding the
critical Reynolds numbers. However for several problems, for example development of the nonlinear
theory, information on the complete small-perturbation spectrum is of interest in studying the behavior of
an arbitrary perturbation in the course of time. The complete small-perturbation spectrum has not been
studied previously in MHD stability problems. The most complete results on stability of Hartmann flow
have been obtained by Lock [1]. The stability of modified Couette flow was studied by Pavlov [3] and Kaku-
tani [2]. They obtained different results on the dependence of the critical Reynolds number on the Hart-
mann number.

2. Tocalculatethe eigenvalues of (1.1) we used a modification of the numerical method for solving the ei-
genvalue problem for ordinary differential equations with small parameter affiliated withthe highest deriva-
tive, developed in [4]. For given G, R, @ the solution of the eigenvalue problem (1.1), (1.2) yields a count-
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able set of spectral numbers cp (@, R,G). For small and large values of

Z @ we can obtain asymptotic expressions for ¢,. Assuming that
- / *

\\\ lel> max (ul, [u"]) (2.1)

7 T ] we obtain from (1.1}, 1.2)
\ T Y, = —[n* (n + 1)? + 462 [ 4oR 2.2)
Z
’ YR T — for those small @ for which (2.1) is satisfied. For Hartmann flow the
55 § &5 7 values n = 1,3,5... correspond to symmetric perturbations, the values
Fig. 3 n=2,4,6... correspond to antisymmetric perturbations. (For small

even values of n, the asymptotic expression (2.2) for Y is approxima-
tely satisfied.) As an asymptotic expression for Xn for small « one takes the average over the cross-
section

+1
Xn:llz S udy (2.3)
-1

although a more exact estimate can be obtained. The spectrum numbering is made in accordance with the
spectral harmonic order for small @. For large « the asymptotic expression for Y, has the form

Ya=—a/R 2.4)

just as in the case of conventional Poiseuille flow. If n >> 1, for finite R the eigenvalue spectrum in the
first approximation coincides with the spectrum of a resting liquid, and therefore the instability type con-
sidered here for the velocity profile cannot be associated with large n.

Thus the region of numerical analysis is limited to the study of a finite number of spectral numbers
n and a finite range of @, This circumstance makes the numerical calculations easily visualized. In study-
ing the spectrum the construction of the relation cpl(@) (for fixed G and R) began with the asymptotic ex-
pressions (2.2), (2.3). Then "continnous motion" is performed up to the asymptotic values of ¢y, for large
« (2.4). "Continuous motion" was also used to find the dependence of the critical Reynolds number Ry and
the critical wavenumber a4 on G and to construct the neutral curves. The eigenvalues were found with a
specified accuracy (three significant digits). The numerical calculations were made on a BESM-6
computer,

3. The stability of Hartmann flow
u = (ch G — ch Gy) / (ch ¢ — 1)

was studied by Lock [1] using the Heisehberg—Lin asymptotic method, He obtained the relations R« (G) and
o, (G) over the entire range of variation of the argument.

The numerical calculations which we made to check the numerical algorithm gave good agreement
with the results of Lock. In Fig. 1 the numerical calculations are represented by the solid line (curve 1),
while Lock's results are the points. The dashed curve 2 shows the asymptotic relation R« = 50,000 G,
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22 constructed by Lock for the limiting case of large G, when the velocity
YR E\\ profile degenerates to exponential form
7 L a
,/ \\ w=1—exp[G(y —1)] (3.1)
42
7 as in the case of the boundary layer with suction. Figure 2 shows the re-
o4 / lation &, (G). (The solid curve 1 is the present calculation, the points are
wy Z//j Lock's data, the dashed curve 2 is Lock's asymptotic equation ax = 0,16
8 ,/ pad ; G.) Lock found that for large G even antisymmetric disturbances may be-~
/ ( / ‘ J . come unstable. Our calculations indicate the nature of this instability.

In Figs. 1 and 2 the curves 3 represent the relations Ry (G) and @4 (G)
for antisymmetric disturbances. The number Ry, becomes finite for

G > 6.5; with further inerease of G the minimal value Ry = 5.4 » 10° is

reached at G = 9.1 and it then increases again, reaching the asymptotic
relation 2 for G > 15. Although R, is smaller for symmetric disturbances, we can see from Fig, 1 that a
situation may be realized in which symmetric disturbances decay while antisymmetric will be neutral or
divergent.

/
wEr ot e ot p? o ow gt
Fig. 6

Figure 3 shows the neutral curves for symmetric (curve 1) and antisymmetric (curve 2) disturbances
for G = 10. One part of the overall neutral curve for the flow (shown by the solid curve) consists of the
neutral curve for symmetric disturbances, and the other part consists of the neutral curve for antisym-
metric disturbances. The overall curve has a form which is vnusual for hydrodynamic stability problems.
It is characteristic that along the lower branch 2 of the neutral curve the asymptotic relation @ ~ 10°/R is
well satisfied even for R > 10°. Since the critical point y, is at a distance of order (@R)"1/3 [5] from the
wall, along the lower branch of the neutral oscillations it does not approach the wall with increase of R but
remains at a fixed distance from the wall, equal to 0,015 for G = 10, Along the other branches of the neu-
tral curves the parameter R increases and the critical point approaches the wall as R — <,

The existence of unstable harmonics with different spectral numbers, and the arguments discussed
in Section 2, suggest study of the entire small-disturbance spectrum. Let us trace the change of the small-
disturbance spectrum with increase of G. In the limiting case G = 0 (Poiseuille flow) the spectrum was
studied in detail in [6]. Its characteristic feature is marked separation of the spectral harmonics with in-
crease of the wavenumber into two classes: disturbances localized near the channel wall with phase ve-
locity approaching zero, and disturbances localized near the channel axis with phase velocity approaching
unity. Inthe case G< 1 the spectral harmonic distribution is the same as for Poiseuille flow: Distur-
bances with numbers n=1, 2, 5, 8. . . are the wall type, those with numbers n=3, 4, 6, 7. . . are the core
type. With increase of G the spectrum changes significantly.

For G = 3 the first symmetric harmonic leads to instability, just as in the Poiseuille parabolic pro-
file case, however disturbances with spectral numbers 2 and 5, which were previously wall-type for G = 0,
become core-type; the disturbance with n = 4, previously cure-type, becomes wall-type. For G = 6 the
spectrum undergoes further modification and, specifically, instability is now associated with the third har-
monic, Figures 4 and 5 show the relations

e, () = X, (@) + iY, (@) for G =10, R = 6 « 105

For large G the velocity profile can be divided into two segments: the wall segment with dimension
about 1/G, where (3.1) holds; and the core, where we can take u = 1, Correspondingly, the spectrum of the
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core disturbances also corresponds with high accuracy to the spectrum of the u = 1 profile, In this case,
as apparently for any smooth convex profiles, the instability is always associated for small G with the even
wall disturbances and for large G with the odd wall disturbances as well. The characteristic values at
large wavenumbers for the symmetric and antisymmetric wall disturbances merge asymptotically in ac-
cordance with the localness properties [6]. Specifically, the shortwave disturbances are in practice non-
zero on a small interval of @ variation of order 1/a and are independent of the nature of the homogeneous
boundary conditions at the channel axis. For o, > 2 the characteristic values for the diverging dis-
turbances and Ry in the symmetric and antisymmetric cases coincide, as we see in Figs. 1 and 2,

The behavior of the core disturbances also illustrates the localness properties. We see in Figs. 4
and 5 that even for small wavenumbers, when the critical point is still relatively far from the axis and the
symmetry and antisymmetry conditions are not significant, the corresponding characteristic values merge
by pairs. With increase of o [in the region of maxima of the relations Y, ()], when the axis lies in a small
vicinity of vy, the conditions at the axis begin to have an effect and the characteristic values stratify over a
small range of variation of o, and then they approach the common asymptotic relation. The stratification
of the c,(e) curves is not large, and therefore is not shown to avoid cluttering the figures. The localness
properties for the core disturbances were analyzed in detail in {6] for the example of Poiseuille flow,

With increase of G there is an increase of the spectral number of the unstable disturbances. We see
from Fig. 5 that for G = 10 the disturbances with n = 5.6 are unstable. For G = 15 one of the unstable dis-
turbances corresponds to n = 8. For G = 18 one corresponds to n = 10. Thus, the spectral number of the
unstable disturbances increases in proportion to G.

The calculations of the small-disturbance spectra for Hartmann flow were made without the term
G*¢" in (1.1). This omission is justified provided oR >> G2, The latter will not be satisfied only for
@ << ax. In Fig. 5 the curve 6' corresponds to the sixth spectral branch, calculated with account for the
term G%@" in the right side of (1.1). Its influence leads to more rapid decay of the disturbances in the
considered spectrum for small . The asymptotic relations for small @ for the spectral branches 6 and 6!
differ significantly in accordance with (2.2).

4. Modified Couette flow
u = gh Gy /sh @

in a transverse magnetic field is an interesting case of destabilizing influence of a magnetic field.

The velocity profile is deformed by the magnetic field in such a way that the Reynolds stresses can
lead to instability. The instability is not associated directly with the inflection point of the velocity pro-
file [2]. Curves 4 in Figs. 1 and 2 are the relations Ry (G), @ (G). Curves 5 in these figures correspond
to the results obtained in [2]. Our numerical calculations agree well with Kakutani's results for small
values of @y . The minimal R« is determined more exactly than in [2]. (The author of {2] noted the inac-
curacy of his values himself.) Calculation of the region of intermediate Hartmann numbers (5< G<15)
now makes it possible to evaluate the stability of the subject flow over the entire range of Hartmann num-
bers. Kakutani concluded that the asymptotic expressions for R, @% with G > 15 should coincide with the
corresponding asymptotic expressions of Lock for Hartmann flow,

The results of the present study show that for G > 15 the relation Ry (G) differs very little from the
Lock relation. We note that the relations Ry (G), a4 (G) are similar to the relations for antisymmetric
disturbances in the case of Hartmann flow.

Figure 6 shows Y(a) for the most critical spectral number for R = 10% for various G. Curve 1 cor-
responds to G = 5, curve 2 is for G = 45, curve 3 is for G = 100. The corresponding calculations were
made with account for the term G?¢" in (1.1). The breaks in the spectral branches correspond to the onset
of oscillatory disturbances for small @, just as in the case of conventional Couette flow. In Fig. 6 the
dashed curve shows the relation II = max, Y (G) for the most critical spectral number for R = 10°, which
illustrates the magnetic field influence on the flow for fixed R.

Instability develops for G = 4, thereafter the increments of the most critical disturbances increase
with increase of G, reaching a maximum at G = 8, and then decrease and for G = 21 the flow again becomes
stable. In [3] the conclusion is drawn that modified Couette flow becomes unstable with respect to infini-
tesimal disturbances for R ~ 25 and G = 1-3. Taking into consideration the results obtained here and in
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[2], we must consider that this conclusion is in error. The statement of Pavlov that the disturbances with
large values of o are physically unrealistic is also invalid.

In conclusion we note that although the immediate subject of this investigation was the stability of

MHD flows, the results obtained demonstrate the influence of the velocity profile shape on the small-dis-
turbance spectrum, and the critical Reynolds numbers are actually independent of the nature of those physi-
cal effects which determine the velocity profile.

<]

478

The authors wish to thank M. A. Gol'dshtik for his interest in this study.

LITERATURE CITED

R. C. Lock, "The stability of the flow of an electrically-conducting fluid between parallel planes un-
der a transverse magnetic field," Proc. Roy. Soc., A 233, No. 1192 (1955).

T. Kakutani, "The hydromagnetic stability of the modified plane Couette flow in the presence of a
transverse magnetic field," J. Phys. Soc. Japan, 19, No. 6 (1964),

K. B. Pavlov, "On the stability of plane Couette flow in the presence of a magnetic field," Collection:
MHD and Plasma Dynamics [in Russian], Izd. AN Latv. SSR, Riga (1962),

M. A. Gol'dshtik and V. A. Sapozhnikov, "Stability of laminar flow in the presence of a mass-force
field," Izv. AN SSSR MZhG, 3, No. 5 (1968).

C. C. Lin, Hydrodynamic Stability, Cambridge University Press (1966).

V. A. Sapozhnikov, M. A. Gol'dshtik, and V. N. Shtern, "Local properties of the velocity profile and
hydrodynamic stability," Collection: 2nd Republic Conference on Aerohydrodynamics, Heat Transfer,
and Mass Transfer (Summaries of Reports) [in Russian], Kiev (1969).



